123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Optional, Sequence
- import numpy as np
- from mmcv.transforms import to_tensor
- from mmcv.transforms.base import BaseTransform
- from mmengine.structures import InstanceData, PixelData
- from mmdet.registry import TRANSFORMS
- from mmdet.structures import DetDataSample, ReIDDataSample, TrackDataSample
- from mmdet.structures.bbox import BaseBoxes
- @TRANSFORMS.register_module()
- class PackDetInputs(BaseTransform):
- """Pack the inputs data for the detection / semantic segmentation /
- panoptic segmentation.
- The ``img_meta`` item is always populated. The contents of the
- ``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- - ``img_id``: id of the image
- - ``img_path``: path to the image file
- - ``ori_shape``: original shape of the image as a tuple (h, w)
- - ``img_shape``: shape of the image input to the network as a tuple \
- (h, w). Note that images may be zero padded on the \
- bottom/right if the batch tensor is larger than this shape.
- - ``scale_factor``: a float indicating the preprocessing scale
- - ``flip``: a boolean indicating if image flip transform was used
- - ``flip_direction``: the flipping direction
- Args:
- meta_keys (Sequence[str], optional): Meta keys to be converted to
- ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
- Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'flip', 'flip_direction')``
- """
- mapping_table = {
- 'gt_bboxes': 'bboxes',
- 'gt_bboxes_labels': 'labels',
- 'gt_masks': 'masks'
- }
- def __init__(self,
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'flip', 'flip_direction')):
- self.meta_keys = meta_keys
- def transform(self, results: dict) -> dict:
- """Method to pack the input data.
- Args:
- results (dict): Result dict from the data pipeline.
- Returns:
- dict:
- - 'inputs' (obj:`torch.Tensor`): The forward data of models.
- - 'data_sample' (obj:`DetDataSample`): The annotation info of the
- sample.
- """
- packed_results = dict()
- if 'img' in results:
- img = results['img']
- if len(img.shape) < 3:
- img = np.expand_dims(img, -1)
- # To improve the computational speed by by 3-5 times, apply:
- # If image is not contiguous, use
- # `numpy.transpose()` followed by `numpy.ascontiguousarray()`
- # If image is already contiguous, use
- # `torch.permute()` followed by `torch.contiguous()`
- # Refer to https://github.com/open-mmlab/mmdetection/pull/9533
- # for more details
- if not img.flags.c_contiguous:
- img = np.ascontiguousarray(img.transpose(2, 0, 1))
- img = to_tensor(img)
- else:
- img = to_tensor(img).permute(2, 0, 1).contiguous()
- packed_results['inputs'] = img
- if 'gt_ignore_flags' in results:
- valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
- ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
- data_sample = DetDataSample()
- instance_data = InstanceData()
- ignore_instance_data = InstanceData()
- for key in self.mapping_table.keys():
- if key not in results:
- continue
- if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
- if 'gt_ignore_flags' in results:
- instance_data[
- self.mapping_table[key]] = results[key][valid_idx]
- ignore_instance_data[
- self.mapping_table[key]] = results[key][ignore_idx]
- else:
- instance_data[self.mapping_table[key]] = results[key]
- else:
- if 'gt_ignore_flags' in results:
- instance_data[self.mapping_table[key]] = to_tensor(
- results[key][valid_idx])
- ignore_instance_data[self.mapping_table[key]] = to_tensor(
- results[key][ignore_idx])
- else:
- instance_data[self.mapping_table[key]] = to_tensor(
- results[key])
- data_sample.gt_instances = instance_data
- data_sample.ignored_instances = ignore_instance_data
- if 'proposals' in results:
- proposals = InstanceData(
- bboxes=to_tensor(results['proposals']),
- scores=to_tensor(results['proposals_scores']))
- data_sample.proposals = proposals
- if 'gt_seg_map' in results:
- gt_sem_seg_data = dict(
- sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
- gt_sem_seg_data = PixelData(**gt_sem_seg_data)
- if 'ignore_index' in results:
- metainfo = dict(ignore_index=results['ignore_index'])
- gt_sem_seg_data.set_metainfo(metainfo)
- data_sample.gt_sem_seg = gt_sem_seg_data
- img_meta = {}
- for key in self.meta_keys:
- assert key in results, f'`{key}` is not found in `results`, ' \
- f'the valid keys are {list(results)}.'
- img_meta[key] = results[key]
- data_sample.set_metainfo(img_meta)
- packed_results['data_samples'] = data_sample
- return packed_results
- def __repr__(self) -> str:
- repr_str = self.__class__.__name__
- repr_str += f'(meta_keys={self.meta_keys})'
- return repr_str
- @TRANSFORMS.register_module()
- class ToTensor:
- """Convert some results to :obj:`torch.Tensor` by given keys.
- Args:
- keys (Sequence[str]): Keys that need to be converted to Tensor.
- """
- def __init__(self, keys):
- self.keys = keys
- def __call__(self, results):
- """Call function to convert data in results to :obj:`torch.Tensor`.
- Args:
- results (dict): Result dict contains the data to convert.
- Returns:
- dict: The result dict contains the data converted
- to :obj:`torch.Tensor`.
- """
- for key in self.keys:
- results[key] = to_tensor(results[key])
- return results
- def __repr__(self):
- return self.__class__.__name__ + f'(keys={self.keys})'
- @TRANSFORMS.register_module()
- class ImageToTensor:
- """Convert image to :obj:`torch.Tensor` by given keys.
- The dimension order of input image is (H, W, C). The pipeline will convert
- it to (C, H, W). If only 2 dimension (H, W) is given, the output would be
- (1, H, W).
- Args:
- keys (Sequence[str]): Key of images to be converted to Tensor.
- """
- def __init__(self, keys):
- self.keys = keys
- def __call__(self, results):
- """Call function to convert image in results to :obj:`torch.Tensor` and
- transpose the channel order.
- Args:
- results (dict): Result dict contains the image data to convert.
- Returns:
- dict: The result dict contains the image converted
- to :obj:`torch.Tensor` and permuted to (C, H, W) order.
- """
- for key in self.keys:
- img = results[key]
- if len(img.shape) < 3:
- img = np.expand_dims(img, -1)
- results[key] = to_tensor(img).permute(2, 0, 1).contiguous()
- return results
- def __repr__(self):
- return self.__class__.__name__ + f'(keys={self.keys})'
- @TRANSFORMS.register_module()
- class Transpose:
- """Transpose some results by given keys.
- Args:
- keys (Sequence[str]): Keys of results to be transposed.
- order (Sequence[int]): Order of transpose.
- """
- def __init__(self, keys, order):
- self.keys = keys
- self.order = order
- def __call__(self, results):
- """Call function to transpose the channel order of data in results.
- Args:
- results (dict): Result dict contains the data to transpose.
- Returns:
- dict: The result dict contains the data transposed to \
- ``self.order``.
- """
- for key in self.keys:
- results[key] = results[key].transpose(self.order)
- return results
- def __repr__(self):
- return self.__class__.__name__ + \
- f'(keys={self.keys}, order={self.order})'
- @TRANSFORMS.register_module()
- class WrapFieldsToLists:
- """Wrap fields of the data dictionary into lists for evaluation.
- This class can be used as a last step of a test or validation
- pipeline for single image evaluation or inference.
- Example:
- >>> test_pipeline = [
- >>> dict(type='LoadImageFromFile'),
- >>> dict(type='Normalize',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- to_rgb=True),
- >>> dict(type='Pad', size_divisor=32),
- >>> dict(type='ImageToTensor', keys=['img']),
- >>> dict(type='Collect', keys=['img']),
- >>> dict(type='WrapFieldsToLists')
- >>> ]
- """
- def __call__(self, results):
- """Call function to wrap fields into lists.
- Args:
- results (dict): Result dict contains the data to wrap.
- Returns:
- dict: The result dict where value of ``self.keys`` are wrapped \
- into list.
- """
- # Wrap dict fields into lists
- for key, val in results.items():
- results[key] = [val]
- return results
- def __repr__(self):
- return f'{self.__class__.__name__}()'
- @TRANSFORMS.register_module()
- class PackTrackInputs(BaseTransform):
- """Pack the inputs data for the multi object tracking and video instance
- segmentation. All the information of images are packed to ``inputs``. All
- the information except images are packed to ``data_samples``. In order to
- get the original annotaiton and meta info, we add `instances` key into meta
- keys.
- Args:
- meta_keys (Sequence[str]): Meta keys to be collected in
- ``data_sample.metainfo``. Defaults to None.
- default_meta_keys (tuple): Default meta keys. Defaults to ('img_id',
- 'img_path', 'ori_shape', 'img_shape', 'scale_factor',
- 'flip', 'flip_direction', 'frame_id', 'is_video_data',
- 'video_id', 'video_length', 'instances').
- """
- mapping_table = {
- 'gt_bboxes': 'bboxes',
- 'gt_bboxes_labels': 'labels',
- 'gt_masks': 'masks',
- 'gt_instances_ids': 'instances_ids'
- }
- def __init__(self,
- meta_keys: Optional[dict] = None,
- default_meta_keys: tuple = ('img_id', 'img_path', 'ori_shape',
- 'img_shape', 'scale_factor',
- 'flip', 'flip_direction',
- 'frame_id', 'video_id',
- 'video_length',
- 'ori_video_length', 'instances')):
- self.meta_keys = default_meta_keys
- if meta_keys is not None:
- if isinstance(meta_keys, str):
- meta_keys = (meta_keys, )
- else:
- assert isinstance(meta_keys, tuple), \
- 'meta_keys must be str or tuple'
- self.meta_keys += meta_keys
- def transform(self, results: dict) -> dict:
- """Method to pack the input data.
- Args:
- results (dict): Result dict from the data pipeline.
- Returns:
- dict:
- - 'inputs' (dict[Tensor]): The forward data of models.
- - 'data_samples' (obj:`TrackDataSample`): The annotation info of
- the samples.
- """
- packed_results = dict()
- packed_results['inputs'] = dict()
- # 1. Pack images
- if 'img' in results:
- imgs = results['img']
- imgs = np.stack(imgs, axis=0)
- imgs = imgs.transpose(0, 3, 1, 2)
- packed_results['inputs'] = to_tensor(imgs)
- # 2. Pack InstanceData
- if 'gt_ignore_flags' in results:
- gt_ignore_flags_list = results['gt_ignore_flags']
- valid_idx_list, ignore_idx_list = [], []
- for gt_ignore_flags in gt_ignore_flags_list:
- valid_idx = np.where(gt_ignore_flags == 0)[0]
- ignore_idx = np.where(gt_ignore_flags == 1)[0]
- valid_idx_list.append(valid_idx)
- ignore_idx_list.append(ignore_idx)
- assert 'img_id' in results, "'img_id' must contained in the results "
- 'for counting the number of images'
- num_imgs = len(results['img_id'])
- instance_data_list = [InstanceData() for _ in range(num_imgs)]
- ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)]
- for key in self.mapping_table.keys():
- if key not in results:
- continue
- if key == 'gt_masks':
- mapped_key = self.mapping_table[key]
- gt_masks_list = results[key]
- if 'gt_ignore_flags' in results:
- for i, gt_mask in enumerate(gt_masks_list):
- valid_idx, ignore_idx = valid_idx_list[
- i], ignore_idx_list[i]
- instance_data_list[i][mapped_key] = gt_mask[valid_idx]
- ignore_instance_data_list[i][mapped_key] = gt_mask[
- ignore_idx]
- else:
- for i, gt_mask in enumerate(gt_masks_list):
- instance_data_list[i][mapped_key] = gt_mask
- else:
- anns_list = results[key]
- if 'gt_ignore_flags' in results:
- for i, ann in enumerate(anns_list):
- valid_idx, ignore_idx = valid_idx_list[
- i], ignore_idx_list[i]
- instance_data_list[i][
- self.mapping_table[key]] = to_tensor(
- ann[valid_idx])
- ignore_instance_data_list[i][
- self.mapping_table[key]] = to_tensor(
- ann[ignore_idx])
- else:
- for i, ann in enumerate(anns_list):
- instance_data_list[i][
- self.mapping_table[key]] = to_tensor(ann)
- det_data_samples_list = []
- for i in range(num_imgs):
- det_data_sample = DetDataSample()
- det_data_sample.gt_instances = instance_data_list[i]
- det_data_sample.ignored_instances = ignore_instance_data_list[i]
- det_data_samples_list.append(det_data_sample)
- # 3. Pack metainfo
- for key in self.meta_keys:
- if key not in results:
- continue
- img_metas_list = results[key]
- for i, img_meta in enumerate(img_metas_list):
- det_data_samples_list[i].set_metainfo({f'{key}': img_meta})
- track_data_sample = TrackDataSample()
- track_data_sample.video_data_samples = det_data_samples_list
- if 'key_frame_flags' in results:
- key_frame_flags = np.asarray(results['key_frame_flags'])
- key_frames_inds = np.where(key_frame_flags)[0].tolist()
- ref_frames_inds = np.where(~key_frame_flags)[0].tolist()
- track_data_sample.set_metainfo(
- dict(key_frames_inds=key_frames_inds))
- track_data_sample.set_metainfo(
- dict(ref_frames_inds=ref_frames_inds))
- packed_results['data_samples'] = track_data_sample
- return packed_results
- def __repr__(self) -> str:
- repr_str = self.__class__.__name__
- repr_str += f'meta_keys={self.meta_keys}, '
- repr_str += f'default_meta_keys={self.default_meta_keys})'
- return repr_str
- @TRANSFORMS.register_module()
- class PackReIDInputs(BaseTransform):
- """Pack the inputs data for the ReID. The ``meta_info`` item is always
- populated. The contents of the ``meta_info`` dictionary depends on
- ``meta_keys``. By default this includes:
- - ``img_path``: path to the image file.
- - ``ori_shape``: original shape of the image as a tuple (H, W).
- - ``img_shape``: shape of the image input to the network as a tuple
- (H, W). Note that images may be zero padded on the bottom/right
- if the batch tensor is larger than this shape.
- - ``scale``: scale of the image as a tuple (W, H).
- - ``scale_factor``: a float indicating the pre-processing scale.
- - ``flip``: a boolean indicating if image flip transform was used.
- - ``flip_direction``: the flipping direction.
- Args:
- meta_keys (Sequence[str], optional): The meta keys to saved in the
- ``metainfo`` of the packed ``data_sample``.
- """
- default_meta_keys = ('img_path', 'ori_shape', 'img_shape', 'scale',
- 'scale_factor')
- def __init__(self, meta_keys: Sequence[str] = ()) -> None:
- self.meta_keys = self.default_meta_keys
- if meta_keys is not None:
- if isinstance(meta_keys, str):
- meta_keys = (meta_keys, )
- else:
- assert isinstance(meta_keys, tuple), \
- 'meta_keys must be str or tuple.'
- self.meta_keys += meta_keys
- def transform(self, results: dict) -> dict:
- """Method to pack the input data.
- Args:
- results (dict): Result dict from the data pipeline.
- Returns:
- dict:
- - 'inputs' (dict[Tensor]): The forward data of models.
- - 'data_samples' (obj:`ReIDDataSample`): The meta info of the
- sample.
- """
- packed_results = dict(inputs=dict(), data_samples=None)
- assert 'img' in results, 'Missing the key ``img``.'
- _type = type(results['img'])
- label = results['gt_label']
- if _type == list:
- img = results['img']
- label = np.stack(label, axis=0) # (N,)
- assert all([type(v) == _type for v in results.values()]), \
- 'All items in the results must have the same type.'
- else:
- img = [results['img']]
- img = np.stack(img, axis=3) # (H, W, C, N)
- img = img.transpose(3, 2, 0, 1) # (N, C, H, W)
- img = np.ascontiguousarray(img)
- packed_results['inputs'] = to_tensor(img)
- data_sample = ReIDDataSample()
- data_sample.set_gt_label(label)
- meta_info = dict()
- for key in self.meta_keys:
- meta_info[key] = results[key]
- data_sample.set_metainfo(meta_info)
- packed_results['data_samples'] = data_sample
- return packed_results
- def __repr__(self) -> str:
- repr_str = self.__class__.__name__
- repr_str += f'(meta_keys={self.meta_keys})'
- return repr_str
|