formatting.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from typing import Optional, Sequence
  3. import numpy as np
  4. from mmcv.transforms import to_tensor
  5. from mmcv.transforms.base import BaseTransform
  6. from mmengine.structures import InstanceData, PixelData
  7. from mmdet.registry import TRANSFORMS
  8. from mmdet.structures import DetDataSample, ReIDDataSample, TrackDataSample
  9. from mmdet.structures.bbox import BaseBoxes
  10. @TRANSFORMS.register_module()
  11. class PackDetInputs(BaseTransform):
  12. """Pack the inputs data for the detection / semantic segmentation /
  13. panoptic segmentation.
  14. The ``img_meta`` item is always populated. The contents of the
  15. ``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
  16. - ``img_id``: id of the image
  17. - ``img_path``: path to the image file
  18. - ``ori_shape``: original shape of the image as a tuple (h, w)
  19. - ``img_shape``: shape of the image input to the network as a tuple \
  20. (h, w). Note that images may be zero padded on the \
  21. bottom/right if the batch tensor is larger than this shape.
  22. - ``scale_factor``: a float indicating the preprocessing scale
  23. - ``flip``: a boolean indicating if image flip transform was used
  24. - ``flip_direction``: the flipping direction
  25. Args:
  26. meta_keys (Sequence[str], optional): Meta keys to be converted to
  27. ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
  28. Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
  29. 'scale_factor', 'flip', 'flip_direction')``
  30. """
  31. mapping_table = {
  32. 'gt_bboxes': 'bboxes',
  33. 'gt_bboxes_labels': 'labels',
  34. 'gt_masks': 'masks'
  35. }
  36. def __init__(self,
  37. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
  38. 'scale_factor', 'flip', 'flip_direction')):
  39. self.meta_keys = meta_keys
  40. def transform(self, results: dict) -> dict:
  41. """Method to pack the input data.
  42. Args:
  43. results (dict): Result dict from the data pipeline.
  44. Returns:
  45. dict:
  46. - 'inputs' (obj:`torch.Tensor`): The forward data of models.
  47. - 'data_sample' (obj:`DetDataSample`): The annotation info of the
  48. sample.
  49. """
  50. packed_results = dict()
  51. if 'img' in results:
  52. img = results['img']
  53. if len(img.shape) < 3:
  54. img = np.expand_dims(img, -1)
  55. # To improve the computational speed by by 3-5 times, apply:
  56. # If image is not contiguous, use
  57. # `numpy.transpose()` followed by `numpy.ascontiguousarray()`
  58. # If image is already contiguous, use
  59. # `torch.permute()` followed by `torch.contiguous()`
  60. # Refer to https://github.com/open-mmlab/mmdetection/pull/9533
  61. # for more details
  62. if not img.flags.c_contiguous:
  63. img = np.ascontiguousarray(img.transpose(2, 0, 1))
  64. img = to_tensor(img)
  65. else:
  66. img = to_tensor(img).permute(2, 0, 1).contiguous()
  67. packed_results['inputs'] = img
  68. if 'gt_ignore_flags' in results:
  69. valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
  70. ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
  71. data_sample = DetDataSample()
  72. instance_data = InstanceData()
  73. ignore_instance_data = InstanceData()
  74. for key in self.mapping_table.keys():
  75. if key not in results:
  76. continue
  77. if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
  78. if 'gt_ignore_flags' in results:
  79. instance_data[
  80. self.mapping_table[key]] = results[key][valid_idx]
  81. ignore_instance_data[
  82. self.mapping_table[key]] = results[key][ignore_idx]
  83. else:
  84. instance_data[self.mapping_table[key]] = results[key]
  85. else:
  86. if 'gt_ignore_flags' in results:
  87. instance_data[self.mapping_table[key]] = to_tensor(
  88. results[key][valid_idx])
  89. ignore_instance_data[self.mapping_table[key]] = to_tensor(
  90. results[key][ignore_idx])
  91. else:
  92. instance_data[self.mapping_table[key]] = to_tensor(
  93. results[key])
  94. data_sample.gt_instances = instance_data
  95. data_sample.ignored_instances = ignore_instance_data
  96. if 'proposals' in results:
  97. proposals = InstanceData(
  98. bboxes=to_tensor(results['proposals']),
  99. scores=to_tensor(results['proposals_scores']))
  100. data_sample.proposals = proposals
  101. if 'gt_seg_map' in results:
  102. gt_sem_seg_data = dict(
  103. sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
  104. gt_sem_seg_data = PixelData(**gt_sem_seg_data)
  105. if 'ignore_index' in results:
  106. metainfo = dict(ignore_index=results['ignore_index'])
  107. gt_sem_seg_data.set_metainfo(metainfo)
  108. data_sample.gt_sem_seg = gt_sem_seg_data
  109. img_meta = {}
  110. for key in self.meta_keys:
  111. assert key in results, f'`{key}` is not found in `results`, ' \
  112. f'the valid keys are {list(results)}.'
  113. img_meta[key] = results[key]
  114. data_sample.set_metainfo(img_meta)
  115. packed_results['data_samples'] = data_sample
  116. return packed_results
  117. def __repr__(self) -> str:
  118. repr_str = self.__class__.__name__
  119. repr_str += f'(meta_keys={self.meta_keys})'
  120. return repr_str
  121. @TRANSFORMS.register_module()
  122. class ToTensor:
  123. """Convert some results to :obj:`torch.Tensor` by given keys.
  124. Args:
  125. keys (Sequence[str]): Keys that need to be converted to Tensor.
  126. """
  127. def __init__(self, keys):
  128. self.keys = keys
  129. def __call__(self, results):
  130. """Call function to convert data in results to :obj:`torch.Tensor`.
  131. Args:
  132. results (dict): Result dict contains the data to convert.
  133. Returns:
  134. dict: The result dict contains the data converted
  135. to :obj:`torch.Tensor`.
  136. """
  137. for key in self.keys:
  138. results[key] = to_tensor(results[key])
  139. return results
  140. def __repr__(self):
  141. return self.__class__.__name__ + f'(keys={self.keys})'
  142. @TRANSFORMS.register_module()
  143. class ImageToTensor:
  144. """Convert image to :obj:`torch.Tensor` by given keys.
  145. The dimension order of input image is (H, W, C). The pipeline will convert
  146. it to (C, H, W). If only 2 dimension (H, W) is given, the output would be
  147. (1, H, W).
  148. Args:
  149. keys (Sequence[str]): Key of images to be converted to Tensor.
  150. """
  151. def __init__(self, keys):
  152. self.keys = keys
  153. def __call__(self, results):
  154. """Call function to convert image in results to :obj:`torch.Tensor` and
  155. transpose the channel order.
  156. Args:
  157. results (dict): Result dict contains the image data to convert.
  158. Returns:
  159. dict: The result dict contains the image converted
  160. to :obj:`torch.Tensor` and permuted to (C, H, W) order.
  161. """
  162. for key in self.keys:
  163. img = results[key]
  164. if len(img.shape) < 3:
  165. img = np.expand_dims(img, -1)
  166. results[key] = to_tensor(img).permute(2, 0, 1).contiguous()
  167. return results
  168. def __repr__(self):
  169. return self.__class__.__name__ + f'(keys={self.keys})'
  170. @TRANSFORMS.register_module()
  171. class Transpose:
  172. """Transpose some results by given keys.
  173. Args:
  174. keys (Sequence[str]): Keys of results to be transposed.
  175. order (Sequence[int]): Order of transpose.
  176. """
  177. def __init__(self, keys, order):
  178. self.keys = keys
  179. self.order = order
  180. def __call__(self, results):
  181. """Call function to transpose the channel order of data in results.
  182. Args:
  183. results (dict): Result dict contains the data to transpose.
  184. Returns:
  185. dict: The result dict contains the data transposed to \
  186. ``self.order``.
  187. """
  188. for key in self.keys:
  189. results[key] = results[key].transpose(self.order)
  190. return results
  191. def __repr__(self):
  192. return self.__class__.__name__ + \
  193. f'(keys={self.keys}, order={self.order})'
  194. @TRANSFORMS.register_module()
  195. class WrapFieldsToLists:
  196. """Wrap fields of the data dictionary into lists for evaluation.
  197. This class can be used as a last step of a test or validation
  198. pipeline for single image evaluation or inference.
  199. Example:
  200. >>> test_pipeline = [
  201. >>> dict(type='LoadImageFromFile'),
  202. >>> dict(type='Normalize',
  203. mean=[123.675, 116.28, 103.53],
  204. std=[58.395, 57.12, 57.375],
  205. to_rgb=True),
  206. >>> dict(type='Pad', size_divisor=32),
  207. >>> dict(type='ImageToTensor', keys=['img']),
  208. >>> dict(type='Collect', keys=['img']),
  209. >>> dict(type='WrapFieldsToLists')
  210. >>> ]
  211. """
  212. def __call__(self, results):
  213. """Call function to wrap fields into lists.
  214. Args:
  215. results (dict): Result dict contains the data to wrap.
  216. Returns:
  217. dict: The result dict where value of ``self.keys`` are wrapped \
  218. into list.
  219. """
  220. # Wrap dict fields into lists
  221. for key, val in results.items():
  222. results[key] = [val]
  223. return results
  224. def __repr__(self):
  225. return f'{self.__class__.__name__}()'
  226. @TRANSFORMS.register_module()
  227. class PackTrackInputs(BaseTransform):
  228. """Pack the inputs data for the multi object tracking and video instance
  229. segmentation. All the information of images are packed to ``inputs``. All
  230. the information except images are packed to ``data_samples``. In order to
  231. get the original annotaiton and meta info, we add `instances` key into meta
  232. keys.
  233. Args:
  234. meta_keys (Sequence[str]): Meta keys to be collected in
  235. ``data_sample.metainfo``. Defaults to None.
  236. default_meta_keys (tuple): Default meta keys. Defaults to ('img_id',
  237. 'img_path', 'ori_shape', 'img_shape', 'scale_factor',
  238. 'flip', 'flip_direction', 'frame_id', 'is_video_data',
  239. 'video_id', 'video_length', 'instances').
  240. """
  241. mapping_table = {
  242. 'gt_bboxes': 'bboxes',
  243. 'gt_bboxes_labels': 'labels',
  244. 'gt_masks': 'masks',
  245. 'gt_instances_ids': 'instances_ids'
  246. }
  247. def __init__(self,
  248. meta_keys: Optional[dict] = None,
  249. default_meta_keys: tuple = ('img_id', 'img_path', 'ori_shape',
  250. 'img_shape', 'scale_factor',
  251. 'flip', 'flip_direction',
  252. 'frame_id', 'video_id',
  253. 'video_length',
  254. 'ori_video_length', 'instances')):
  255. self.meta_keys = default_meta_keys
  256. if meta_keys is not None:
  257. if isinstance(meta_keys, str):
  258. meta_keys = (meta_keys, )
  259. else:
  260. assert isinstance(meta_keys, tuple), \
  261. 'meta_keys must be str or tuple'
  262. self.meta_keys += meta_keys
  263. def transform(self, results: dict) -> dict:
  264. """Method to pack the input data.
  265. Args:
  266. results (dict): Result dict from the data pipeline.
  267. Returns:
  268. dict:
  269. - 'inputs' (dict[Tensor]): The forward data of models.
  270. - 'data_samples' (obj:`TrackDataSample`): The annotation info of
  271. the samples.
  272. """
  273. packed_results = dict()
  274. packed_results['inputs'] = dict()
  275. # 1. Pack images
  276. if 'img' in results:
  277. imgs = results['img']
  278. imgs = np.stack(imgs, axis=0)
  279. imgs = imgs.transpose(0, 3, 1, 2)
  280. packed_results['inputs'] = to_tensor(imgs)
  281. # 2. Pack InstanceData
  282. if 'gt_ignore_flags' in results:
  283. gt_ignore_flags_list = results['gt_ignore_flags']
  284. valid_idx_list, ignore_idx_list = [], []
  285. for gt_ignore_flags in gt_ignore_flags_list:
  286. valid_idx = np.where(gt_ignore_flags == 0)[0]
  287. ignore_idx = np.where(gt_ignore_flags == 1)[0]
  288. valid_idx_list.append(valid_idx)
  289. ignore_idx_list.append(ignore_idx)
  290. assert 'img_id' in results, "'img_id' must contained in the results "
  291. 'for counting the number of images'
  292. num_imgs = len(results['img_id'])
  293. instance_data_list = [InstanceData() for _ in range(num_imgs)]
  294. ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)]
  295. for key in self.mapping_table.keys():
  296. if key not in results:
  297. continue
  298. if key == 'gt_masks':
  299. mapped_key = self.mapping_table[key]
  300. gt_masks_list = results[key]
  301. if 'gt_ignore_flags' in results:
  302. for i, gt_mask in enumerate(gt_masks_list):
  303. valid_idx, ignore_idx = valid_idx_list[
  304. i], ignore_idx_list[i]
  305. instance_data_list[i][mapped_key] = gt_mask[valid_idx]
  306. ignore_instance_data_list[i][mapped_key] = gt_mask[
  307. ignore_idx]
  308. else:
  309. for i, gt_mask in enumerate(gt_masks_list):
  310. instance_data_list[i][mapped_key] = gt_mask
  311. else:
  312. anns_list = results[key]
  313. if 'gt_ignore_flags' in results:
  314. for i, ann in enumerate(anns_list):
  315. valid_idx, ignore_idx = valid_idx_list[
  316. i], ignore_idx_list[i]
  317. instance_data_list[i][
  318. self.mapping_table[key]] = to_tensor(
  319. ann[valid_idx])
  320. ignore_instance_data_list[i][
  321. self.mapping_table[key]] = to_tensor(
  322. ann[ignore_idx])
  323. else:
  324. for i, ann in enumerate(anns_list):
  325. instance_data_list[i][
  326. self.mapping_table[key]] = to_tensor(ann)
  327. det_data_samples_list = []
  328. for i in range(num_imgs):
  329. det_data_sample = DetDataSample()
  330. det_data_sample.gt_instances = instance_data_list[i]
  331. det_data_sample.ignored_instances = ignore_instance_data_list[i]
  332. det_data_samples_list.append(det_data_sample)
  333. # 3. Pack metainfo
  334. for key in self.meta_keys:
  335. if key not in results:
  336. continue
  337. img_metas_list = results[key]
  338. for i, img_meta in enumerate(img_metas_list):
  339. det_data_samples_list[i].set_metainfo({f'{key}': img_meta})
  340. track_data_sample = TrackDataSample()
  341. track_data_sample.video_data_samples = det_data_samples_list
  342. if 'key_frame_flags' in results:
  343. key_frame_flags = np.asarray(results['key_frame_flags'])
  344. key_frames_inds = np.where(key_frame_flags)[0].tolist()
  345. ref_frames_inds = np.where(~key_frame_flags)[0].tolist()
  346. track_data_sample.set_metainfo(
  347. dict(key_frames_inds=key_frames_inds))
  348. track_data_sample.set_metainfo(
  349. dict(ref_frames_inds=ref_frames_inds))
  350. packed_results['data_samples'] = track_data_sample
  351. return packed_results
  352. def __repr__(self) -> str:
  353. repr_str = self.__class__.__name__
  354. repr_str += f'meta_keys={self.meta_keys}, '
  355. repr_str += f'default_meta_keys={self.default_meta_keys})'
  356. return repr_str
  357. @TRANSFORMS.register_module()
  358. class PackReIDInputs(BaseTransform):
  359. """Pack the inputs data for the ReID. The ``meta_info`` item is always
  360. populated. The contents of the ``meta_info`` dictionary depends on
  361. ``meta_keys``. By default this includes:
  362. - ``img_path``: path to the image file.
  363. - ``ori_shape``: original shape of the image as a tuple (H, W).
  364. - ``img_shape``: shape of the image input to the network as a tuple
  365. (H, W). Note that images may be zero padded on the bottom/right
  366. if the batch tensor is larger than this shape.
  367. - ``scale``: scale of the image as a tuple (W, H).
  368. - ``scale_factor``: a float indicating the pre-processing scale.
  369. - ``flip``: a boolean indicating if image flip transform was used.
  370. - ``flip_direction``: the flipping direction.
  371. Args:
  372. meta_keys (Sequence[str], optional): The meta keys to saved in the
  373. ``metainfo`` of the packed ``data_sample``.
  374. """
  375. default_meta_keys = ('img_path', 'ori_shape', 'img_shape', 'scale',
  376. 'scale_factor')
  377. def __init__(self, meta_keys: Sequence[str] = ()) -> None:
  378. self.meta_keys = self.default_meta_keys
  379. if meta_keys is not None:
  380. if isinstance(meta_keys, str):
  381. meta_keys = (meta_keys, )
  382. else:
  383. assert isinstance(meta_keys, tuple), \
  384. 'meta_keys must be str or tuple.'
  385. self.meta_keys += meta_keys
  386. def transform(self, results: dict) -> dict:
  387. """Method to pack the input data.
  388. Args:
  389. results (dict): Result dict from the data pipeline.
  390. Returns:
  391. dict:
  392. - 'inputs' (dict[Tensor]): The forward data of models.
  393. - 'data_samples' (obj:`ReIDDataSample`): The meta info of the
  394. sample.
  395. """
  396. packed_results = dict(inputs=dict(), data_samples=None)
  397. assert 'img' in results, 'Missing the key ``img``.'
  398. _type = type(results['img'])
  399. label = results['gt_label']
  400. if _type == list:
  401. img = results['img']
  402. label = np.stack(label, axis=0) # (N,)
  403. assert all([type(v) == _type for v in results.values()]), \
  404. 'All items in the results must have the same type.'
  405. else:
  406. img = [results['img']]
  407. img = np.stack(img, axis=3) # (H, W, C, N)
  408. img = img.transpose(3, 2, 0, 1) # (N, C, H, W)
  409. img = np.ascontiguousarray(img)
  410. packed_results['inputs'] = to_tensor(img)
  411. data_sample = ReIDDataSample()
  412. data_sample.set_gt_label(label)
  413. meta_info = dict()
  414. for key in self.meta_keys:
  415. meta_info[key] = results[key]
  416. data_sample.set_metainfo(meta_info)
  417. packed_results['data_samples'] = data_sample
  418. return packed_results
  419. def __repr__(self) -> str:
  420. repr_str = self.__class__.__name__
  421. repr_str += f'(meta_keys={self.meta_keys})'
  422. return repr_str