xdecoder-tiny_zeroshot_open-vocab-semseg_coco.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. _base_ = '_base_/xdecoder-tiny_open-vocab-semseg.py'
  2. dataset_type = 'CocoSegDataset'
  3. data_root = 'data/coco/'
  4. test_pipeline = [
  5. dict(
  6. type='LoadImageFromFile', imdecode_backend='pillow',
  7. backend_args=None),
  8. dict(
  9. type='ResizeShortestEdge', scale=800, max_size=1333, backend='pillow'),
  10. dict(
  11. type='LoadAnnotations',
  12. with_bbox=False,
  13. with_label=False,
  14. with_seg=True),
  15. dict(
  16. type='PackDetInputs',
  17. meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
  18. 'text'))
  19. ]
  20. x_decoder_coco2017_semseg_classes = (
  21. 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
  22. 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
  23. 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
  24. 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
  25. 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
  26. 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
  27. 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
  28. 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
  29. 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
  30. 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
  31. 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
  32. 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
  33. 'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard',
  34. 'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit',
  35. 'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform',
  36. 'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea',
  37. 'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone',
  38. 'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other',
  39. 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
  40. 'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged',
  41. 'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged',
  42. 'food-other-merged', 'building-other-merged', 'rock-merged',
  43. 'wall-other-merged', 'rug-merged')
  44. val_dataloader = dict(
  45. batch_size=1,
  46. num_workers=2,
  47. persistent_workers=True,
  48. drop_last=False,
  49. sampler=dict(type='DefaultSampler', shuffle=False),
  50. dataset=dict(
  51. type=dataset_type,
  52. data_root=data_root,
  53. metainfo=dict(classes=x_decoder_coco2017_semseg_classes),
  54. use_label_map=False,
  55. data_prefix=dict(
  56. img_path='val2017/',
  57. seg_map_path='annotations/panoptic_semseg_val2017/'),
  58. pipeline=test_pipeline,
  59. return_classes=True))
  60. test_dataloader = val_dataloader
  61. val_evaluator = dict(type='SemSegMetric', iou_metrics=['mIoU'])
  62. test_evaluator = val_evaluator